
Allylic Halogenation

Initiation
$$N = \frac{hv}{\text{or heat}} + \frac{hv}{\text{or heat}}$$

Termination

Big Change - For this reaction you need to choose the most stable product, NOT worrying about the most stable contributing structure of an allylic radical intermediate.

Special Alkene Bonus: Important material you will need to know!

Alkene stability part 1: Z (cis) groups larger than H atoms will crunch into each other causing steric strain.

Alkene stability part 2: For reasons we are not able to tell you, more substituted alkenes have more stable (stronger) pi bonds than alkenes with more H atoms on their sp²-hybridized C atoms (despite there being steric strain present in the most substituted alkenes).

Strongest Pi Bond

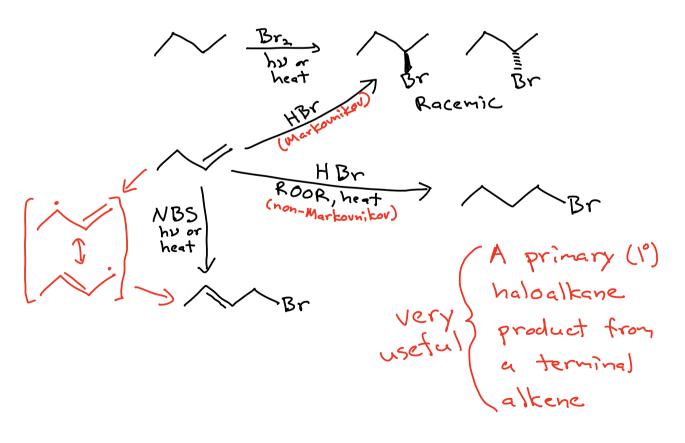
$$H_{3}C$$
 $C=C$
 CH_{3}
 $H_{3}C$
 $C=C$
 $C=C$
 CH_{3}
 $H_{3}C$
 $C=C$
 CH_{3}
 $C=C$
 CH_{3}
 $C=C$
 CH_{3}
 $C=C$
 CH_{4}
 $C=C$
 CH_{5}
 CH_{5}

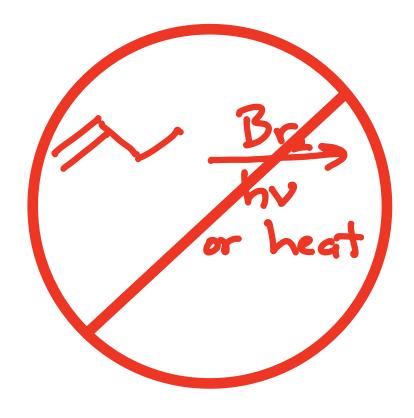
Weakest Pi Bond

Time Capsule: Zaitsev's rule follows this trend!!

Non-Markovnikov Addition of HBr to an Alkene

For subtle reasons (not discussed) H-Br, Rook and heat gives very little allylic halogenation, and NBS/hv or heat gives very little alkene addition even though they both involve [Br:] and an alkene starting


material.


Please accept this

This is huge 7

HBr ROOR — Non-Markovnikov Regiochemistry

Making Haloalkanes

Never use Br, and by or heat with an alkene!

New Concept -> Leaving Group

A group that can make a single bond to carbon that can make a stable species when it departs

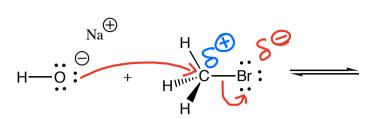
nucleophiles/bases

(slow) step of

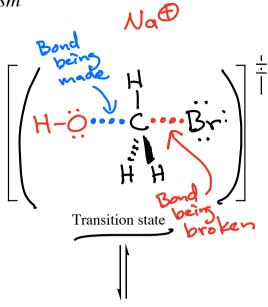
the reaction

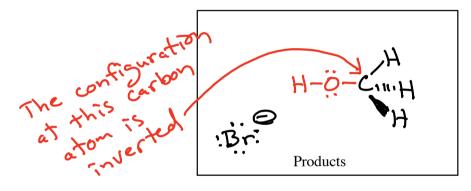
Halogens

I > Br > Cl > F


Leaving Group Ability

Anion Stability


1st New Mechanism


Substitution (Nucleophilic involved in the Nucleophilic rate-determining

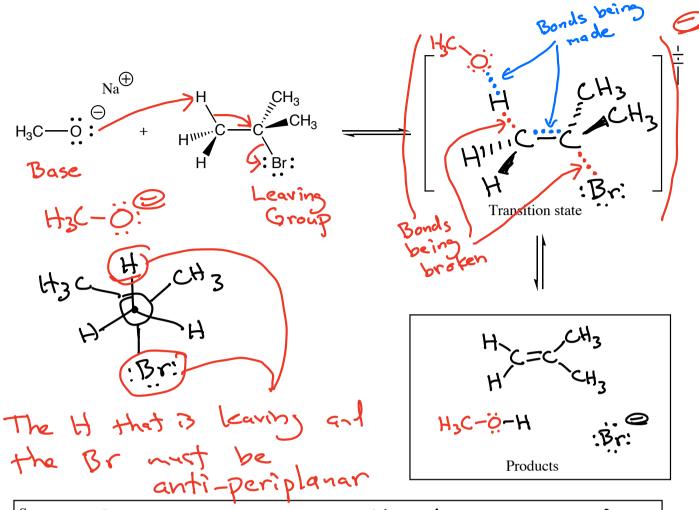
Nucleophile → must attack at the back of the C-Br bond. → This angle and direction of attack helps break the C-Br bond

Summary: The nucleophile attacks by making a new bond to C from the back of the C-X bond just as X leaves

Regiochemistry: N/A

Stereochemistry: InVERSION at the site of reaction

Example:


NaN₃

Nucleophile

Leaving
Group

2nd New Mechanism

Elimination TEDE Bimolecular -> both the haloalkane and the base are involved in the rate-determining (slow) step of the reaction

Summary: Base removes an H atom as a pi bond forms and the Br atom leaves The H and Br must be anti-periplanar

Regiochemistry: Zaitsevis Rule -> most stable alkere product

Stereochemistry: Determined by anti-periplenar transition stake

Last seen October 7, 2024:

Special Alkene Bonus: Important material you will need to know!

Alkene stability part 1: Z (cis) groups larger than H atoms will crunch into each other causing steric strain.

Alkene stability part 2: For reasons we are not able to tell you, more substituted alkenes have more stable (stronger) pi bonds than alkenes with more H atoms on their sp²-hybridized C atoms (despite there being steric strain present in the most substituted alkenes).

Strongest Pi Bond

$$H_{3}C$$
 $C=C$
 CH_{3}
 $H_{3}C$
 $C=C$
 $C=C$
 $C=C$
 CH_{3}
 $H_{3}C$
 $C=C$
 CH_{3}
 $C=C$
 CH_{3}
 $C=C$
 CH_{3}
 $C=C$
 CH_{4}
 CH_{5}
 $C=C$
 CH_{5}
 CH_{5}

Weakest Pi Bond

Time Capsule: Zaitsev's rule follows this trend!!